Using big data technology in financial analysis of enterprise activities
Abstract and keywords
Abstract:
The paper proposes an extended definition of "big data" as an interdisciplinary and relative category that combines the properties of data arrays and streams, the requirements for their processing, and the criteria for the practical value of the results. It is shown that the evolution of approaches from the "volume-speed-variety" triad to the inclusion of aspects of quality, variability, and reproducibility is driven by the complexity of sources (sensors, transactions, and multimedia) and the growing institutional requirements. For the financial sector of Russia, three key blocks of application are described: asset management, risk management and work with the client base, where the integration of heterogeneous sources, streaming and batch processing, standardization and verification of indicators provide an increase in the accuracy of forecasts, a reduction in response time and an improvement in the client experience. The issues of using the technology of "big data" in the financial analysis of the enterprise activity are considered. A three-component definition framework (data properties, processing requirements, and utility criteria) and a three-stage methodology (unified data model, processing pipelines, and modeling and verification) are proposed. The article also addresses quality and ethical considerations, including data origin, bias control, model validation, and documentation of transformations. The authors conclude that institutionalized and technologically supported data frameworks create verifiable management value and a foundation for long-term sustainability in financial decision-making.

Keywords:
big data, financial analysis, asset management, customer analytics, streaming processing, data quality, and regulatory requirements
Text
Text (PDF): Read Download
References

1. Mayer-Shenberger, V. Bol'shie dannye Revolyuciya, kotoraya izmeni to, kak my zhivem, rabotaem i myslim / Viktor Mayer-Shenberberg, Kennet Kuk'er; per. s angl. Inny Gaydyuk. – M.: Mann, Ivanov i Ferber, 2014. – 240 s.

2. Atdaeva O. Ispol'zovanie tehnologiy big data v finansovoy otrasli / O. Atdaeva, H. Seyitgel'dieva // Simvol nauki: mezhdunarodnyy nauchnyy zhurnal. – 2024. – T. 1, № 2-2. – S. 36-37.

3. Konopleva Yu. A. Primenenie tehnologii Big data na finansovyh rynkah / Yu. A. Konopleva, O. N. Pakova, Yu. R. Deych // Vestnik Severo-Kavkazskogo federal'nogo universiteta. – 2022. – № 2(89). – S. 58-65. – DOIhttps://doi.org/10.37493/2307-907X.2022.2.8.

4. Otchet Evropeyskoy komissii po dannym i innovaciyam «100 radikal'nyh innovacionnyh proryvov buduschego». URL:https://commission.europa.eu/publications/annual-activity-report-2024-research-and-innovation_en

5. Cifrovaya transformaciya: ozhidaniya i real'nost': dokl. k XXIII Yasinskoy (Aprel'skoy) mezhdunar. nauch. konf. po problemam razvitiya ekonomiki i obschestva, Moskva, 2022 g. [Tekst] / G. I. Abdrahmanova, S. A. Vasil'kovskiy, K. O. Vishnevskiy, M. A. Gershman, L. M. Gohberg i dr.; ruk. avt. kol. P. B. Rudnik; Nac. issled. un-t «Vysshaya shkola ekonomiki». — M.: Izd. dom Vysshey shkoly ekonomiki, 2022.

6. Rukovodstvo OESR po upravleniyu cifrovym pravitel'stvom. URL:https://u-intosai.org/ru/novosti/rukovodstvo-oesr-po-upravleniyu-cifrovym-pravitelstvom

7. Statistika i otchety. Mincifry. URL:https://digital.gov.ru/activity/statistics-reports

8. Global statistics at the heart of international cooperation. URL:https://data.bis.org

9. Paolo Brandimarte. Handbook in Monte Carlo Simulation: Applications in Financial Engineering, Risk Management, and Economics. URL:https://onlinelibrary.wiley.com/doi/book/10.1002/9781118593264

10. Mescheryakov R.V., Shustov S.A. Model' steganograficheskogo vstraivaniya informacii v izobrazheniya s ispol'zovaniem metodov glubokogo obucheniya. – M. IPPI RAN. Tom 25, №1. S.1-13.

11. Doklady Organizacii ekonomicheskogo sotrudnichestva i razvitiya o politike v oblasti dannyh. URL:https://www.oecd.org/digital/

12. Otchety Evropeyskoy komissii po ekonomike dannyh. URL:https://digital-strategy.ec.europa.eu/

13. Analiticheskie materialy Banka mezhdunarodnyh raschetov, russkoyazychnye i mul'tiyazychnye publikacii. URL:https://www.bis.org/

14. IPPI RAN. URL:https://www.ipiran.ru/

15. Voevodin V.V., Voevodin Vl.V. Parallel'nye vychisleniya. – Spb.: BHV-Peterburg, 2002.

Login or Create
* Forgot password?